skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Healy-Kalesh, M. W."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT A nova super-remnant (NSR) is an immense structure associated with a nova that forms when frequent and recurrent nova (RN) eruptions sweep up surrounding interstellar medium (ISM) into a high-density and distant shell. The prototypical NSR, measuring over 100 pc across, was discovered in 2014 around the annually erupting nova M 31N 2008-12a. Hydrodynamical simulations demonstrated that the creation of a dynamic NSR by repeated eruptions transporting large quantities of ISM is not only feasible but that these structures should exist around all novae, whether the white dwarf (WD) is increasing or decreasing in mass. But it is only the RN with the highest WD masses and accretion rates that should host observable NSRs. KT Eridani is, potentially, the eleventh RNe recorded in the Galaxy and is also surrounded by a recently unveiled H α shell tens of parsecs across, consistent with an NSR. Through modelling the nova ejecta from KT Eri, we demonstrate that such an observable NSR could form in approximately 50 000 yr, which fits with the proper motion history of the nova. We compute the expected H α emission from the KT Eri NSR and predict that the structure might be accessible to wide-field X-ray facilities. 
    more » « less